
civic-scraper

unknown

Jun 20, 2023

CONTENTS

1 Documentation 3

2 Links 27

Python Module Index 29

Index 31

i

ii

civic-scraper

Tools for downloading agendas, minutes and other documents produced by local government

CONTENTS 1

civic-scraper

2 CONTENTS

CHAPTER

ONE

DOCUMENTATION

1.1 Getting started

Install the library from the Python Package Index.

pipenv install civic-scraper

Upon installation, you should have access to the civic-scraper tool on the command line:

pipenv run civic-scraper --help

. . . and start scraping from the command line:

pipenv run civic-scraper scrape --download --url http://nc-nashcounty.civicplus.com/
→˓AgendaCenter

Or in a script:

from civic_scraper.platforms import CivicPlusSite

url = "http://nc-nashcounty.civicplus.com/AgendaCenter"
site = CivicPlusSite(url)
site.scrape(download=True)

Note: There are many more options for customizing scrapes, especially by date range. Check out the Usage docs for
details. See the Getting started docs to configure the download location.

1.2 Usage

1.2.1 Overview

civic-scraper provides a command-line tool and underlying Python library that can be used to fetch metadata about
government documents and help download those documents.

The command-line tool makes it easy to get started scraping for basic use cases, while the Python library offers a wider
range of options for use in custom scripts.

Government agendas and other files downloaded by civic-scraper are saved to a a standard – but configurable – location
in the user’s home directory (~/.civic-scraper on Linux/Mac).

3

civic-scraper

Below are more details on using the Command line as well as writing Custom scripts.

Note: civic-scraper currently supports scraping of five software platforms: Civic Clerk, Civic Plus, Granicus,
Legistar and PrimeGov.

1.2.2 Find a site to scrape

Before you can start scraping government documents, you must first pinpoint URLs for one or more agencies of interest.
Alternatively, you may want to review our lists of known Civic Plus sites or Legistar sites to see if any agencies in your
area use one of these platforms.

In addition to Civic Plus and Legistar, civic-scraper currently supports Civic Clerk, Granicus and PrimeGov.

If your target agency uses one of these platforms, you should be able to scrape the site by writing a Python script that
uses the appropriate platform scraper class.

If your agency site is not currently supported, you can try reaching out to us to see if the platform is on our development
roadmap. We also welcome open-source contributions if you want to add support for a new platform.

1.2.3 Command line

Once you install civic-scraper and find a site to scrape, you’re ready to begin using the command-line tool.

Note: To test drive examples below, you should replace <site URL> with a URL to a Civic Plus site, e.g. http:
//nc-nashcounty.civicplus.com/AgendaCenter.

Getting help

civic-scraper provides a scrape subcommand as the primary way to fetch metadata and files from government sites.
You can use the tool’s --help flag to get details on the available options:

civic-scraper scrape --help

Basic usage

By default, civic-scraper checks a site for meetings that occur on the current day and generates a metadata CSV listing
information about any available meeting agendas or minutes:

Scrape current day and generate metadata CSV
civic-scraper scrape --url <site URL>

4 Chapter 1. Documentation

https://github.com/biglocalnews/civic-scraper/tree/master/civic_scraper/platforms
https://docs.google.com/spreadsheets/d/e/2PACX-1vQaa2mt0aXGN-gMT1LHgYzDbzrxwF1aQBKCkY5QMoUGlAbFVrv47FaMwPdiISx-kdedTY8_6fiJ0Vi3/pubhtml
https://docs.google.com/spreadsheets/d/1YVn5C0nN_aAITIBGMhNiulnLpF5eo5fF6gpZTQ4oWU8/edit?usp=sharing
https://github.com/biglocalnews/civic-scraper/tree/master/civic_scraper/platforms
http://nc-nashcounty.civicplus.com/AgendaCenter
http://nc-nashcounty.civicplus.com/AgendaCenter

civic-scraper

Download documents

civic-scraper does not automatically download agendas or minutes by default since, depending on the time period of
the scrape and size of the documents, this could involve a large quantity of data.

You must explicitly tell civic-scraper to download documents by using the --download flag, which will fetch and save
agendas/minutes to civic-scraper’s cache directory:

civic-scraper scrape --download --url <site URL>

Scrape by date

civic-scraper provides the ability to set a date range to support scraping documents from meetings in the past:

Scrape docs from meetings in January 2020
civic-scraper scrape \
--start-date=2020-01-01 \
--end-date=2020-01-31 \
--url <site URL>

Scrape multiple sites

If you need to scrape more than one site at a time, you can supply a CSV containing URLs to civic-scraper.

The input CSV must store site URLs in a column called url, similar to the list of known sites for the Civic Plus platform.

Let’s say we have a ca_examples.csv with two agencies in California:

state,url
ca, https://ca-alpinecounty.civicplus.com/AgendaCenter
ca, https://ca-anaheim.civicplus.com/AgendaCenter

You can scrape both sites by supplying the CSV’s path to the --urls-file flag:

Scrape current day for URLs listed in CSV (should contain "url" field)
civic-scraper scrape --urls-file ca_examples.csv

Store scraping artifacts

As part of the scraping process, civic-scraper acquires “intermediate” file artifacts such as HTML pages with links to
meeting agendas and minutes.

We believe it’s important to keep such file artifacts for the sake of transparency and reproducibility.

Use the --cache flag to store these files in the civic-scraper cache directory:

civic-scraper scrape --cache --url <site URL>

1.2. Usage 5

https://docs.google.com/spreadsheets/d/e/2PACX-1vQaa2mt0aXGN-gMT1LHgYzDbzrxwF1aQBKCkY5QMoUGlAbFVrv47FaMwPdiISx-kdedTY8_6fiJ0Vi3/pubhtml

civic-scraper

Putting it all together

The command-line options mentioned above can be used in tandem (with the exception of --url and --urls-file,
which are mutually exclusive).

For example, the below command:

civic-scraper scrape \
--cache \
--download \
--start-date=2020-01-01 \
--end-date=2020-01-31 \
--url <site URL>

would performing the following actions:

• Generate a [Metadata CSV] on available documents for meetings in January 2020

• Download agendas and minutes for meetings in the specified date range

• Cache the HTML of search results pages containing links to agendas/minutes

1.2.4 Custom scripts

civic-scraper provides an importable Python package for users who are comfortable creating their own scripts. The
Python package provides access to a wider variety of features for added flexibility and support for more advanced
scenarios (e.g controlling the location of downloaded files or avoiding download of excessively large files).

Note: In order to use civic-scraper in a script, you must install the package and import one of the platform scraper
classes. In the examples below, we use the CivicPlusSite class. See the platforms folder on GitHub for other
available platform classes.

Site classes may support slightly different interfaces/features due to differences in features on each platform.

It’s a good idea to review the docstrings and methods for a class before attempting to use it.

Scrape metadata

Once you install civic-scraper and find a site to scrape, you’re ready to begin using the civic_scraper Python
package.

Note: Below we use East Palo Alto, CA as an example. More agencies can be found in the list of known sites for the
Civic Plus platform.

Create an instance of CivicPlusSite by passing it the URL for an agency’s CivicPlus Agenda Center site. Then call
the scrape method:

from civic_scraper.platforms import CivicPlusSite
url = 'https://ca-eastpaloalto.civicplus.com/AgendaCenter'
site = CivicPlusSite(url)
assets_metadata = site.scrape()

6 Chapter 1. Documentation

https://github.com/biglocalnews/civic-scraper/tree/master/civic_scraper/platforms
https://docs.google.com/spreadsheets/d/e/2PACX-1vQaa2mt0aXGN-gMT1LHgYzDbzrxwF1aQBKCkY5QMoUGlAbFVrv47FaMwPdiISx-kdedTY8_6fiJ0Vi3/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vQaa2mt0aXGN-gMT1LHgYzDbzrxwF1aQBKCkY5QMoUGlAbFVrv47FaMwPdiISx-kdedTY8_6fiJ0Vi3/pubhtml

civic-scraper

Note: CivicPlusSite is an alias for more convenient import of the actual Civic Plus class located at
civic_scraper.platforms.civic_plus.site.Site.

CivicPlusSite.scrape will automatically store downloaded assets in the default cache directory.

This location can be customized by setting an environment variable or by passing an instance of civic_scraper.
base.cache.Cache to CivicPlusSite:

from civic_scraper.base.cache import Cache
from civic_scraper.platforms import CivicPlusSite

url = 'https://ca-eastpaloalto.civicplus.com/AgendaCenter'

Change output dir to /tmp
site = CivicPlusSite(url, cache=Cache('/tmp'))
assets_metadata = site.scrape()

Export metadata to CSV

By default, CivicPlusSite.scrape returns an AssetCollection containing Asset instances.

The asset instances store metadata about specific meeting agendas and minutes discovered on the site.

To save a timestamped CSV containing metadata for available assets, call AssetCollection.to_csv() with a target
output directory:

Save metadata CSV
assets_metadata.to_csv('/tmp/civic-scraper/metadata')

Download assets

There are two primary ways to download file assets discovered by a scrape.

You can trigger downloads by passing download=True to CivicPlusSite.scrape:

site.scrape(download=True)

Or you can loop over the Asset instances in an AssetCollection and call download() on each with a target
output directory:

assets_metadata = site.scrape()
for asset in assets_metadata:

asset.download('/tmp/civic-scraper/assets')

1.2. Usage 7

civic-scraper

Scrape by date

By default, scraping checks the site for meetings on the current day (based on a user’s local time).

Scraping can be modified to capture assets from different date ranges by supplying the optional start_date and/or
end_date arguments to CivicPlusSite.scrape.

Their values must be strings of the form YYYY-MM-DD:

Scrape info from January 1-30, 2020
assets_metadata = site.scrape(start_date='2020-01-01', end_date='2020-01-30')

Note: The above will not download the assets by default. See download assets script for details on saving the discov-
ered files locally.

Advanced configuration

You can exercise more fine-grained control over the size and type of files to download using the file_size and
asset_list arguments to CivicPlusSite.scrape:

Download only minutes that are 20MB or smaller
site.scrape(
download=True,
file_size=20,
asset_list=['minutes']

)

Here are more details on the parameters mentioned above:

• file_size - Limit downloads to files with max file size in megabytes.

• asset_list - Limit downloads to one or more [asset types] (described below in Metadata CSV). The default is
to download all document types.

1.2.5 Metadata CSV

civic-scraper provides the ability to produce a CSV of metadata about agendas, minutes and other files discov-
ered during a scrape. The file is automatically generated when using the command line and can be exported using
AssetCollection.to_csv in the context of a custom script.

The generated file contains the following information:

• url (str) - The download link for an asset

• asset_name (str) - The title of an asset. Ex: City Council Special Budget Meeting - April 4, 2020

• committee_name (str) - The name of the committee that generated the asset. Ex: City Council

• place (str) - Name of the place associated with the asset (lowercased, punctuation removed). Ex: eastpaloalto

• state_or_province (str) - The lowercase two-letter abbreviation for the state or province associated with an
asset

• asset_type (str) - One of the _`asset types` for meeting-related documents:

– agenda

8 Chapter 1. Documentation

civic-scraper

– minutes

– audio

– video

– agenda_packet - The exhibits and ancillary documents attached to a meeting agenda.

– captions - The transcript of a meeting recording.

• meeting_date (str) - Date of meeting or blank if no meeting date given in the format YYYY-MM-DD.

• meeting_time (str) - Time of meeting or blank if no time given.

• meeting_id (str) - A unique meeting ID assigned to the record.

• scraped_by (str) - Version of civic-scraper that produced the asset. Ex: civicplus_v0.1.0

• content_type (str) - The MIME type of the asset. Ex: application/pdf

• content_length (str) - The size of the asset in bytes.

1.2.6 Changing the download location

By default, civic-scraper will store downloaded agendas, minutes and other files in a default directory.

You can customize this location by setting the CIVIC_SCRAPER_DIR environment variable.

1.3 Advanced configuration

1.3.1 Default cache directory

By default, files downloaded by the CLI tool and underlying Python library code will be saved to the .civic-scraper
folder in the user’s home directory.

On Linux/Mac systems, this will be ~/.civic-scraper/.

1.3.2 Customize cache directory

To use an alternate cache directory, set the below environment variable (e.g. in a ~/.bashrc or ~/.bash_profile
configuration file):

export CIVIC_SCRAPER_DIR=/tmp/some_other_dir

1.4 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

1.3. Advanced configuration 9

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types

civic-scraper

1.4.1 Types of Contributions

Report Bugs

Report bugs at https://github.com/biglocalnews/civic-scraper/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants to
implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

Do Research

This project involves a fair bit of research, especially with respect to locating platforms and sites to scrape. Research
jobs are great ways to get involved if you don’t write code but still want to pitch in. Anything tagged with the “research”
and “help wanted” labels on GitHub is fair game.

Write Documentation

civic-scraper could always use more documentation, whether as part of the official civic-scraper docs, in docstrings, or
even on the web in blog posts, articles, and such.

Our official docs use restructuredText and Sphinx. To contribute documentation:

• Fork and clone this repo

• Create a virtual environment and perform the next steps inside an active venv

• pip install -r requirements.txt and pip install -r requirements-dev.txt

• Create a branch for your doc updates and start writing!

• Use make docs to build docs and/or use make servedocs commands to run a Sphinx server that displays doc
pages and allows easier reloading of pages in browser

• Create a GitHub Pull Request once you’re ready to send us your changes

10 Chapter 1. Documentation

https://github.com/biglocalnews/civic-scraper/issues
https://civic-scraper.readthedocs.io/en/latest/?badge=latest

civic-scraper

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/biglocalnews/civic-scraper/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

1.4.2 Get Started!

Ready to contribute? Here’s how to set up civic-scraper for local development.

1. Fork the civic-scraper repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/civic-scraper.git

3. Install developement dependencies and your local copy of the code into a virtualenv and set up your fork for local
development. There are numerous ways to create virtual environments in Python. Below uses the venv library
built into recent Python versions:

Create a virtual env alongside the civic-scraper git repo
python -m venv civic-scraper-env

Activate the virtual env
source civic-scraper-env/bin/activate

Install dev requirements and the Python package into the venv
cd civic-scraper/
pip install -r requirements-dev.txt
python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 civic_scraper tests
$ py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

1.4. Contributing 11

https://github.com/biglocalnews/civic-scraper/issues
https://docs.python.org/3/library/venv.html

civic-scraper

7. Submit a pull request through the GitHub website.

1.4.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, please be sure to review the docs and include necessary updates. For
example, new classes, methods and functions should be documented.

3. The pull request should work for Python version 3.6 or higher. Check https://travis-ci.com/github/biglocalnews/
civic-scraper/pull_requests and make sure that the tests pass for all supported Python versions.

1.5 Releasing

Our release process is automated as a continuous deployment via the GitHub Actions framework. The logic that governs
the process is stored in the workflows directory.

That means that everything necessary to make a release can be done with a few clicks on the GitHub website. All you
need to do is make a tagged release at biglocalnews/civic-scraper/releases, then wait for the computers to handle the
job.

Here’s how it’s done, step by step. The screenshots are from a different repository, but the process is the same.

1.5.1 1. Go to the releases page

The first step is to visit our repository’s homepage and click on the “releases” headline in the right rail.

12 Chapter 1. Documentation

https://travis-ci.com/github/biglocalnews/civic-scraper/pull_requests
https://travis-ci.com/github/biglocalnews/civic-scraper/pull_requests
https://en.wikipedia.org/wiki/Continuous_deployment
https://github.com/features/actions
https://github.com/biglocalnews/civic-scraper/blob/main/.github/workflows/continuous-deployment.yml
https://github.com/biglocalnews/civic-scraper/releases
https://github.com/biglocalnews/civic-scraper
https://github.com/biglocalnews/civic-scraper/releases

civic-scraper

1.5.2 2. Click ‘Draft a new release’

Note the number of the latest release. Click the “Draft a new release” button in the upper-right corner. If you don’t see
this button, you do not have permission to make a release. Only the maintainers of the repository are able to release
new code.

1.5. Releasing 13

civic-scraper

1.5.3 3. Create a new tag

Think about how big your changes are and decide if you’re a major, minor or patch release.

All version numbers should feature three numbers separated by the periods, like 1.0.1. If you’re making a major
release that isn’t backwards compatible, the latest release’s first number should go up by one. If you’re making a minor
release by adding a feature or major a large change, the second number should go up. If you’re only fixing bugs or
making small changes, the third number should go up.

If you’re unsure, review the standards defined at semver.org to help make a decision. In the end don’t worry about it
too much. Our version numbers don’t need to be perfect. They just need to be three numbers separated by periods.

Once you’ve settled on the number for your new release, click on the “Choose a tag” pull down.

14 Chapter 1. Documentation

https://semver.org

civic-scraper

Enter your version number into the box. Then click the “Create new tag” option that appears.

1.5. Releasing 15

civic-scraper

1.5.4 4. Name the release

Enter the same number into the “Release title” box.

16 Chapter 1. Documentation

civic-scraper

1.5.5 5. Auto-generate release notes

Click the “Auto-generate release notes” button in the upper right corner of the large description box.

1.5. Releasing 17

civic-scraper

That should fill in the box below. What appears will depend on how many pull requests you’ve merged since the last
release.

18 Chapter 1. Documentation

civic-scraper

1.5.6 6. Publish the release

Click the green button that says “Publish release” at the bottom of the page.

1.5. Releasing 19

civic-scraper

1.5.7 7. Wait for the Action to finish

GitHub will take you to a page dedicated to your new release and start an automated process that release our new version
to the world. Follow its progress by clicking on the Actions tab near the top of the page.

20 Chapter 1. Documentation

https://github.com/biglocalnews/civic-scraper/actions

civic-scraper

That will take you to the Actions monitoring page. The task charged with publishing your release should be at the top.

1.5. Releasing 21

civic-scraper

After a few minutes, the process there should finish and show a green check mark. When it does, visit civic-scraper’s
page on PyPI, where you should see the latest version displayed at the top of the page.

If the action fails, something has gone wrong with the deployment process. You can click into its debugging panel to
search for the cause or ask the project maintainers for help.

1.6 Reference

1.6.1 civic_scraper

Subpackages

civic_scraper.base

22 Chapter 1. Documentation

https://pypi.org/project/civic-scraper/
https://pypi.org/project/civic-scraper/

civic-scraper

Submodules

civic_scraper.base.asset

class civic_scraper.base.asset.Asset(url: str, asset_name: Optional[str] = None, committee_name:
Optional[str] = None, place: Optional[str] = None, place_name:
Optional[str] = None, state_or_province: Optional[str] = None,
asset_type: Optional[str] = None, meeting_date:
Optional[datetime] = None, meeting_time: Optional[time] = None,
meeting_id: Optional[str] = None, scraped_by: Optional[str] =
None, content_type: Optional[str] = None, content_length:
Optional[str] = None)

Bases: object

Parameters

• url (str) – URL to download an asset.

• asset_name (str) – Title of an asset. Ex: City Council Regular Meeting

• committee_name (str) – Name of committee that generated the asset. Ex: City Council

• place (str) – Name of place associated with the asset. Lowercase with spaces and punctu-
ation removed. Ex: menlopark

• place_name (str) – Human-readable place name. Ex: Menlo Park

• state_or_province (str) – Two-letter abbreviation for state or province associated with
an asset. Ex: ca

• asset_type (str) – One of SUPPORTED_ASSET_TYPES. Ex: agenda

• meeting_date (datetime.datetime) – Date of meeting or None if no date given

• meeting_time (datetime.time) – Time of meeting or None

• meeting_id (str) – Unique meeting ID. For example, cominbation of scraper type, subdo-
main and numeric ID or date. Ex: civicplus-nc-nashcounty-05052020-382

• scraped_by (str) – civic_scraper.__version__

• content_type (str) – File type of the asset as given by HTTP headers. Ex: ‘applica-
tion/pdf’

• content_length (str) – Asset size in bytes

Public methods:
download: downloads an asset to a given target_path

download(target_dir, session=None)
Downloads an asset to a target directory.

Parameters
target_dir (str) – target directory name

Returns
Full path to downloaded file

class civic_scraper.base.asset.AssetCollection(iterable=(), /)
Bases: list

1.6. Reference 23

civic-scraper

to_csv(target_dir)
Write metadata about the asset list to a csv.

Parameters
targer_dir (str) – Path to directory where metadata file should be written.

Output: csv with metadata

Returns
Path to file written.

civic_scraper.base.cache

class civic_scraper.base.cache.Cache(path=None)
Bases: object

property artifacts_path

Path for HTML and other intermediate artifacts from scraping

property assets_path

Path for agendas, minutes and other gov file assets

property metadata_files_path

Path for metadata files related to file artifacts

write(name, content)

civic_scraper.base.constants

civic_scraper.base.site

class civic_scraper.base.site.Site(base_url, cache=<civic_scraper.base.cache.Cache object>,
parser_kls=None)

Bases: object

Base class for all Site scrapers.

Parameters

• base_url (int) – URL to a government agency site

• cache (Cache instance) – Optional Cache instance (default: “.civic-scraper” in user
home dir)

• parser_kls (class) – Optional parser class to extract data from government agency web-
sites.

scrape(*args, **kwargs)→ AssetCollection
Scrape the site and return an AssetCollection instance.

24 Chapter 1. Documentation

civic-scraper

civic_scraper.platforms

Subpackages

civic_scraper.platforms.civic_plus

Submodules

civic_scraper.platforms.civic_plus.parser

civic_scraper.platforms.civic_plus.site

Submodules

civic_scraper.runner

class civic_scraper.runner.Runner(cache_path=None)
Bases: object

Facade class to simplify invocation and usage of scrapers.

Arguments:

• cache_path – Path to cache location for scraped file artifact

scrape(start_date, end_date, site_urls=[], cache=False, download=False)
Scrape file metadata and assets for a list of agency sites.

For a given scraper, scrapes file artificate metadata and downloads file artificats. Automatically generats a
metadata CSV of file assets.

If requested, caches intermediate file artifacts such as HTML from scraped pages and downloads file assets
such as agendas, minutes (caching and downloading are optional and are off by default).

Parameters

• start_date (str) – Start date of scrape (YYYY-MM-DD)

• end_date (str) – End date of scrape (YYYY-MM-DD)

• site_urls (list) – List of site URLs

• cache (bool) – Optionally cache intermediate file artificats such as HTML (default: False)

• download (bool) – Optionally download file assets such as agendas (default: False)

Outputs:
Metadata CSV listing file assets for given sites and params.

Returns
AssetCollection instance

exception civic_scraper.runner.ScraperError

Bases: Exception

1.6. Reference 25

civic-scraper

civic_scraper.utils

civic_scraper.utils.default_user_home()

civic_scraper.utils.dtz_to_dt(dtz)

civic_scraper.utils.mb_to_bytes(size_mb)

civic_scraper.utils.parse_date(date_str, format='%Y-%m-%d')

civic_scraper.utils.today_local_str()

26 Chapter 1. Documentation

CHAPTER

TWO

LINKS

• Documentation: http://civic-scraper.readthedocs.io/en/latest/

• GitHub: https://github.com/biglocalnews/civic-scraper

• PyPI: https://pypi.python.org/pypi/civic-scraper

27

http://civic-scraper.readthedocs.io/en/latest/
https://github.com/biglocalnews/civic-scraper
https://pypi.python.org/pypi/civic-scraper

civic-scraper

28 Chapter 2. Links

PYTHON MODULE INDEX

c
civic_scraper.base.asset, 23
civic_scraper.base.cache, 24
civic_scraper.base.constants, 24
civic_scraper.base.site, 24
civic_scraper.runner, 25
civic_scraper.utils, 26

29

civic-scraper

30 Python Module Index

INDEX

A
artifacts_path (civic_scraper.base.cache.Cache prop-

erty), 24
Asset (class in civic_scraper.base.asset), 23
AssetCollection (class in civic_scraper.base.asset), 23
assets_path (civic_scraper.base.cache.Cache prop-

erty), 24

C
Cache (class in civic_scraper.base.cache), 24
civic_scraper.base.asset

module, 23
civic_scraper.base.cache

module, 24
civic_scraper.base.constants

module, 24
civic_scraper.base.site

module, 24
civic_scraper.runner

module, 25
civic_scraper.utils

module, 26

D
default_user_home() (in module civic_scraper.utils),

26
download() (civic_scraper.base.asset.Asset method), 23
dtz_to_dt() (in module civic_scraper.utils), 26

M
mb_to_bytes() (in module civic_scraper.utils), 26
metadata_files_path

(civic_scraper.base.cache.Cache property),
24

module
civic_scraper.base.asset, 23
civic_scraper.base.cache, 24
civic_scraper.base.constants, 24
civic_scraper.base.site, 24
civic_scraper.runner, 25
civic_scraper.utils, 26

P
parse_date() (in module civic_scraper.utils), 26

R
Runner (class in civic_scraper.runner), 25

S
scrape() (civic_scraper.base.site.Site method), 24
scrape() (civic_scraper.runner.Runner method), 25
ScraperError, 25
Site (class in civic_scraper.base.site), 24

T
to_csv() (civic_scraper.base.asset.AssetCollection

method), 23
today_local_str() (in module civic_scraper.utils), 26

W
write() (civic_scraper.base.cache.Cache method), 24

31

	Documentation
	Getting started
	Usage
	Overview
	Find a site to scrape
	Command line
	Getting help
	Basic usage
	Download documents
	Scrape by date
	Scrape multiple sites
	Store scraping artifacts
	Putting it all together

	Custom scripts
	Scrape metadata
	Export metadata to CSV
	Download assets
	Scrape by date
	Advanced configuration

	Metadata CSV
	Changing the download location

	Advanced configuration
	Default cache directory
	Customize cache directory

	Contributing
	Types of Contributions
	Report Bugs
	Fix Bugs
	Implement Features
	Do Research
	Write Documentation
	Submit Feedback

	Get Started!
	Pull Request Guidelines

	Releasing
	1. Go to the releases page
	2. Click ‘Draft a new release’
	3. Create a new tag
	4. Name the release
	5. Auto-generate release notes
	6. Publish the release
	7. Wait for the Action to finish

	Reference
	civic_scraper
	Subpackages
	civic_scraper.base
	Submodules
	civic_scraper.base.asset
	civic_scraper.base.cache
	civic_scraper.base.constants
	civic_scraper.base.site

	civic_scraper.platforms
	Subpackages
	civic_scraper.platforms.civic_plus
	Submodules
	civic_scraper.platforms.civic_plus.parser
	civic_scraper.platforms.civic_plus.site

	Submodules
	civic_scraper.runner
	civic_scraper.utils

	Links
	Python Module Index
	Index

